If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-7q=0
a = 1; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*1}=\frac{0}{2} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*1}=\frac{14}{2} =7 $
| w-160=30 | | x2+-9=14 | | x-7x+3=51 | | 3(x+20=12 | | |2x−6|=8 | | (10x+5)(6x+5)(4×)=360 | | 9^x+3^x-12=0 | | 6x2-24=0 | | 2x+1,5=x-1/4 | | 10x+5+6x+5+4×=360 | | 10x+5×6x+5+4×=360 | | 4(2y+9)+7=24 | | 98=9r+8 | | 3m-12=60 | | -2x+17=-9 | | 22=c/7+23 | | 5/12x=8 | | -6/7x+4=-20 | | 47=v/6+39 | | 2=24÷x+4 | | (X+2)÷3=(2x-1)÷4 | | 3d-18=33 | | g/8+78=82 | | 8x+6=5+8x | | 2.86z-8.153=-3.72 | | (3/4)-(x/8)=1 | | 10–25x=5 | | 5v+19=54 | | |-8x-4|=12 | | 4+2g=12 | | -|8x-4|=12 | | |8x-4|=12 |